Search results
Results From The WOW.Com Content Network
Muscle fiber showing thick and thin myofilaments of a myofibril. There are three different types of myofilaments: thick, thin, and elastic filaments. [1] Thick filaments consist primarily of a type of myosin, a motor protein – myosin II. Each thick filament is approximately 15 nm in diameter, and each is made of several hundred molecules of ...
The sarcolemma (sarco (from sarx) from Greek; flesh, and lemma from Greek; sheath), also called the myolemma, is the cell membrane surrounding a skeletal muscle fibre or a cardiomyocyte. [1] [2] It consists of a lipid bilayer and a thin outer coat of polysaccharide material that contacts the basement membrane.
The thin myofilaments are filaments of mostly actin and the thick filaments are of mostly myosin and they slide over each other to shorten the fiber length in a muscle contraction. The third type of myofilament is an elastic filament composed of titin , a very large protein.
In electron micrographs of cross-striated muscle, the Z-line (from the German "zwischen" meaning between) appears in between the I-bands as a dark line that anchors the actin myofilaments. Surrounding the Z-line is the region of the I-band (for isotropic). I-band is the zone of thin filaments that is not superimposed by thick filaments (myosin).
A myofibril (also known as a muscle fibril or sarcostyle) [1] is a basic rod-like organelle of a muscle cell. [2] Skeletal muscles are composed of long, tubular cells known as muscle fibers, and these cells contain many chains of myofibrils. [3] Each myofibril has a diameter of 1–2 micrometres. [3]
Muscle fibers are formed from the fusion of developmental myoblasts in a process known as myogenesis resulting in long multinucleated cells. In these cells, the nuclei, termed myonuclei, are located along the inside of the cell membrane. Muscle fibers also have multiple mitochondria to meet energy needs. Muscle fibers are in turn composed of ...
Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils.It is found in essentially all eukaryotic cells, where it may be present at a concentration of over 100 μM; its mass is roughly 42 kDa, with a diameter of 4 to 7 nm.
T-tubules (transverse tubules) are extensions of the cell membrane that penetrate into the center of skeletal and cardiac muscle cells.With membranes that contain large concentrations of ion channels, transporters, and pumps, T-tubules permit rapid transmission of the action potential into the cell, and also play an important role in regulating cellular calcium concentration.