Search results
Results From The WOW.Com Content Network
Van Maanen's star is also the nearest solitary white dwarf [5] First white dwarf with a planet WD B1620−26: 2003 PSR B1620-26 b (planet) This planet is a circumbinary planet, which circles both stars in the PSR B1620-26 system [6] [7] First singular white dwarf with a transiting object WD 1145+017: 2015 Known object is a disintegrating ...
The highly magnetized white dwarf in the binary system AR Scorpii was identified in 2016 as the first pulsar in which the compact object is a white dwarf instead of a neutron star. [120] A second white dwarf pulsar was discovered in 2023. [121]
An exoplanet orbits PSR B1620-26 and its white dwarf companion (see below) in a circumbinary orbit. HD 49798: 1,600 White dwarf: One of the smallest white dwarf stars known. [14] ZTF J1901+1458: 1,809 Currently the most massive white dwarf known. [15] Janus: 3,400 A white dwarf with a side of hydrogen and another side of helium. [16] Wolf 1130 ...
List of white dwarfs; List of red dwarfs; By Astronomical Catalog ... Timeline of white dwarfs, neutron stars, and supernovae; References
Of those, 103 are main sequence stars: 80 red dwarfs and 23 "typical" stars having greater mass. Additionally, astronomers have found 6 white dwarfs (stars that have exhausted all fusible hydrogen), 21 brown dwarfs, as well as 1 sub-brown dwarf, WISE 0855−0714 (possibly a rogue planet).
White dwarfs are the slowly cooling stars that have cast off their outer layers during the last stages of their lives. Hubble discovers hydrogen-burning white dwarfs enjoying slow ageing Skip to ...
The Hertzsprung–Russell diagram showing the location of main sequence dwarf stars and white dwarfs. A dwarf star is a star of relatively small size and low luminosity. Most main sequence stars are dwarf stars. The meaning of the word "dwarf" was later extended to some star-sized objects that are not stars, and compact stellar remnants that ...
White dwarfs arise from the cores of main-sequence stars and are therefore very hot when they are formed. As they cool they will redden and dim until they eventually become dark black dwarfs. White dwarfs were observed in the 19th century, but the extremely high densities and pressures they contain were not explained until the 1920s.