Ad
related to: radio inductor quality factor
Search results
Results From The WOW.Com Content Network
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
Q-meter E9-4. Internally, a minimal Q meter consists of a tuneable RF generator with a very low (pass) impedance output and a detector with a very high impedance input. There is usually provision to add a calibrated amount of high Q capacitance across the component under test to allow inductors to be measured in isolation.
The higher the Q factor of the inductor, the closer it approaches the behavior of an ideal inductor. High Q inductors are used with capacitors to make resonant circuits in radio transmitters and receivers. The higher the Q is, the narrower the bandwidth of the resonant circuit. The Q factor of an inductor is defined as
Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.
The ultra-low electrical resistivity of a superconducting material allows an RF resonator to obtain an extremely high quality factor, Q. For example, it is commonplace for a 1.3 GHz niobium SRF resonant cavity at 1.8 kelvins to obtain a quality factor of Q=5×10 10. Such a very high Q resonator stores energy with very low loss and narrow bandwidth.
Radio transmitters use low-pass ... A resistor–inductor circuit or RL ... is the frequency scaling factor, and is the quality factor. Equation 1 describes three ...
In electrical engineering and telecommunications the Chu–Harrington limit or Chu limit sets a lower limit on the Q factor for a small radio antenna. [1] The theorem was developed in several papers between 1948 and 1960 by Lan Jen Chu, [2] Harold Wheeler, [3] and later by Roger F. Harrington. [4]
LC circuits are often used as filters; the Q ("Quality" factor) determines the bandwidth of each LC tuned circuit in the radio. The L/C ratio, in turn, determines their Q and so their selectivity, because the rest of the circuit - the aerial or amplifier feeding the tuned circuit for example - will contain present resistance.