When.com Web Search

  1. Ad

    related to: rectangular coordinate system example math

Search results

  1. Results From The WOW.Com Content Network
  2. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    A Cartesian coordinate system in two dimensions (also called a rectangular coordinate system or an orthogonal coordinate system [8]) is defined by an ordered pair of perpendicular lines (axes), a single unit of length for both axes, and an orientation for each axis. The point where the axes meet is taken as the origin for both, thus turning ...

  3. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.

  4. Coordinate system - Wikipedia

    en.wikipedia.org/wiki/Coordinate_system

    The relationship between different systems is described by coordinate transformations, which give formulas for the coordinates in one system in terms of the coordinates in another system. For example, in the plane, if Cartesian coordinates (x, y) and polar coordinates (r, θ) have the same origin, and the polar axis is the positive x axis, then ...

  5. Orthogonal coordinates - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_coordinates

    A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...

  6. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry . Analytic geometry is used in physics and engineering , and also in aviation , rocketry , space science , and spaceflight .

  7. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    We simply need to compute the vector endpoint coordinates at 75°. The examples in this article apply to active rotations of vectors counterclockwise in a right-handed coordinate system (y counterclockwise from x) by pre-multiplication (the rotation matrix R applied on the left of the column vector v to be rotated).

  8. Quadrant (plane geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadrant_(plane_geometry)

    The four quadrants of a Cartesian coordinate system. The axes of a two-dimensional Cartesian system divide the plane into four infinite regions, called quadrants, each bounded by two half-axes. The axes themselves are, in general, not part of the respective quadrants.

  9. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane. The set R 2 {\displaystyle \mathbb {R} ^{2}} of the ordered pairs of real numbers (the real coordinate plane ), equipped with the dot product , is often called the Euclidean plane or standard Euclidean plane , since every Euclidean plane is isomorphic to it.