When.com Web Search

  1. Ad

    related to: connection definition geometry

Search results

  1. Results From The WOW.Com Content Network
  2. Connection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Connection_(mathematics)

    In geometry, the notion of a connection makes precise the idea of transporting local geometric objects, such as tangent vectors or tensors in the tangent space, along a curve or family of curves in a parallel and consistent manner. There are various kinds of connections in modern geometry, depending on what sort of data one wants to transport.

  3. Connection (vector bundle) - Wikipedia

    en.wikipedia.org/wiki/Connection_(vector_bundle)

    In mathematics, and especially differential geometry and gauge theory, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points.

  4. Connection (principal bundle) - Wikipedia

    en.wikipedia.org/wiki/Connection_(principal_bundle)

    In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points.

  5. Riemannian connection on a surface - Wikipedia

    en.wikipedia.org/wiki/Riemannian_connection_on_a...

    In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form.

  6. Affine connection - Wikipedia

    en.wikipedia.org/wiki/Affine_connection

    Affine connections can be defined within Cartan's general framework. [7] In the modern approach, this is closely related to the definition of affine connections on the frame bundle. Indeed, in one formulation, a Cartan connection is an absolute parallelism of a principal bundle satisfying suitable properties.

  7. Christoffel symbols - Wikipedia

    en.wikipedia.org/wiki/Christoffel_symbols

    In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. [1] The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface.

  8. Metric connection - Wikipedia

    en.wikipedia.org/wiki/Metric_connection

    In mathematics, a metric connection is a connection in a vector bundle E equipped with a bundle metric; that is, a metric for which the inner product of any two vectors will remain the same when those vectors are parallel transported along any curve. [1] This is equivalent to: A connection for which the covariant derivatives of the metric on E ...

  9. Ehresmann connection - Wikipedia

    en.wikipedia.org/wiki/Ehresmann_connection

    A G-connection on E is an Ehresmann connection such that the parallel transport map τ : F x → F x′ is given by a G-transformation of the fibers (over sufficiently nearby points x and x′ in M joined by a curve). [5] Given a principal connection on P, one obtains a G-connection on the associated fiber bundle E = P × G F via pullback.