When.com Web Search

  1. Ad

    related to: how to solve for gradient calculator math word

Search results

  1. Results From The WOW.Com Content Network
  2. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  3. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.

  4. Conjugate gradient squared method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_squared...

    To solve the system is to find the value of the unknown vector . [3] [5] A direct method for solving a system of linear equations is to take the inverse of the matrix , then calculate =. However, computing the inverse is computationally expensive.

  5. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Simultaneous perturbation stochastic approximation (SPSA) method for stochastic optimization; uses random (efficient) gradient approximation. Methods that evaluate only function values: If a problem is continuously differentiable, then gradients can be approximated using finite differences, in which case a gradient-based method can be used.

  6. Biconjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Biconjugate_gradient_method

    In mathematics, more specifically in numerical linear algebra, the biconjugate gradient method is an algorithm to solve systems of linear equations A x = b . {\displaystyle Ax=b.\,} Unlike the conjugate gradient method , this algorithm does not require the matrix A {\displaystyle A} to be self-adjoint , but instead one needs to perform ...

  7. The Best Graphing Calculators to Plot, Predict and Solve ...

    www.aol.com/best-graphing-calculators-plot...

    These calculators haven’t changed much since they were introduced three decades ago, but neither has math. The Best Graphing Calculators to Plot, Predict and Solve Complicated Problems Skip to ...

  8. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    The gradient of F is then normal to the hypersurface. Similarly, an affine algebraic hypersurface may be defined by an equation F(x 1, ..., x n) = 0, where F is a polynomial. The gradient of F is zero at a singular point of the hypersurface (this is the definition of a singular point). At a non-singular point, it is a nonzero normal vector.

  9. Adjoint state method - Wikipedia

    en.wikipedia.org/wiki/Adjoint_state_method

    By using the dual form of this constraint optimization problem, it can be used to calculate the gradient very fast. A nice property is that the number of computations is independent of the number of parameters for which you want the gradient. The adjoint method is derived from the dual problem [4] and is used e.g. in the Landweber iteration ...