When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    This was really only relevant for presentation, because matrix multiplication was stack-based and could still be interpreted as post-multiplication, but, worse, reality leaked through the C-based API because individual elements would be accessed as M[vector][coordinate] or, effectively, M[column][row], which unfortunately muddled the convention ...

  3. Matrix representation - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation

    Hence, if an m × n matrix is multiplied with an n × r matrix, then the resultant matrix will be of the order m × r. [3] Operations like row operations or column operations can be performed on a matrix, using which we can obtain the inverse of a matrix. The inverse may be obtained by determining the adjoint as well.

  4. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    In linear algebra, a column vector with ⁠ ⁠ elements is an matrix [1] consisting of a single column of ⁠ ⁠ entries, for example, = [].. Similarly, a row vector is a matrix for some ⁠ ⁠, consisting of a single row of ⁠ ⁠ entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)

  5. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    Let A be an m × n matrix, with row vectors r 1, r 2, ..., r m. A linear combination of these vectors is any vector of the form + + +, where c 1, c 2, ..., c m are scalars. The set of all possible linear combinations of r 1, ..., r m is called the row space of A.

  6. Real coordinate space - Wikipedia

    en.wikipedia.org/wiki/Real_coordinate_space

    In standard matrix notation, each element of R n is typically written as a column vector = [] and sometimes as a row vector: = []. The coordinate space R n may then be interpreted as the space of all n × 1 column vectors , or all 1 × n row vectors with the ordinary matrix operations of addition and scalar multiplication .

  7. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A diagonal matrix where the diagonal elements are either +1 or −1. Single-entry matrix: A matrix where a single element is one and the rest of the elements are zero. Skew-Hermitian matrix: A square matrix which is equal to the negative of its conjugate transpose, A * = −A. Skew-symmetric matrix

  8. Matrix element - Wikipedia

    en.wikipedia.org/wiki/Matrix_element

    Matrix element may refer to: The (scalar) entries of a matrix. Matrix element (physics), the value of a linear operator (especially a modified Hamiltonian) in quantum theory; Matrix coefficient, a type of function in representation theory; Element (software), free and open-source software instant messaging client implementing the Matrix protocol

  9. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    The identity matrix I n of size n is the n-by-n matrix in which all the elements on the main diagonal are equal to 1 and all other elements are equal to 0, for example, = [], = [], = [] It is a square matrix of order n, and also a special kind of diagonal matrix.