Ads
related to: goulds vertical turbine pump curves
Search results
Results From The WOW.Com Content Network
Performance tests are done on the pumps to verify the claims made by the pump maker. It is quite possible that with time in the plant, requirements of the process along with the infrastructure and conditions may change considerably. In that case pump curves are used to verify whether the pumps would still be the best fit for modified requirements.
Specific speed is an index used to predict desired pump or turbine performance. i.e. it predicts the general shape of a pump's impeller. It is this impeller's "shape" that predicts its flow and head characteristics so that the designer can then select a pump or turbine most appropriate for a particular application.
With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.
If an NPSH A is say 10 bar then the pump you are using will deliver exactly 10 bar more over the entire operational curve of a pump than its listed operational curve. Example: A pump with a max. pressure head of 8 bar (80 metres) will actually run at 18 bar if the NPSH A is 10 bar. i.e.: 8 bar (pump curve) plus 10 bar NPSH A = 18 bar.
A pump as turbine (PAT), also known as a pump in reverse, is an unconventional type of reaction water turbine, which behaves in a similar manner to that of a Francis turbine. The function of a PAT is comparable to that of any turbine , to convert kinetic and pressure energy of the fluid into mechanical energy of the runner.
Warman centrifugal pump in a coal preparation plant application A pair of centrifugal pumps for circulating hot water within a hydronic heating system. Centrifugal pumps are used to transport fluids by the conversion of rotational kinetic energy to the hydrodynamic energy of the fluid flow. The rotational energy typically comes from an engine ...