When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.

  3. Convex curve - Wikipedia

    en.wikipedia.org/wiki/Convex_curve

    A convex curve (black) forms a connected subset of the boundary of a convex set (blue), and has a supporting line (red) through each of its points. A parabola, a convex curve that is the graph of the convex function () = In geometry, a convex curve is a plane curve that has a supporting line through each of its points.

  4. List of convexity topics - Wikipedia

    en.wikipedia.org/wiki/List_of_convexity_topics

    Convex function - a function in which the line segment between any two points on the graph of the function lies above the graph. Closed convex function - a convex function all of whose sublevel sets are closed sets. Proper convex function - a convex function whose effective domain is nonempty and it never attains minus infinity. Concave ...

  5. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    In simple terms, a convex function graph is shaped like a cup (or a straight line like a linear function), while a concave function's graph is shaped like a cap . A twice- differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain . [ 1 ]

  6. Convex set - Wikipedia

    en.wikipedia.org/wiki/Convex_set

    A function is convex if and only if its epigraph, the region (in green) above its graph (in blue), is a convex set.. Let S be a vector space or an affine space over the real numbers, or, more generally, over some ordered field (this includes Euclidean spaces, which are affine spaces).

  7. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  8. Convex analysis - Wikipedia

    en.wikipedia.org/wiki/Convex_analysis

    Convex analysis includes not only the study of convex subsets of Euclidean spaces but also the study of convex functions on abstract spaces. Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex minimization, a subdomain of optimization theory.

  9. Convex geometry - Wikipedia

    en.wikipedia.org/wiki/Convex_geometry

    Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.