Search results
Results From The WOW.Com Content Network
In a dispersive prism, material dispersion (a wavelength-dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. A compact fluorescent lamp seen through an Amici prism. Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1]
This is a result of the prism material's index of refraction varying with wavelength (dispersion). Generally, longer wavelengths (red) undergo a smaller deviation than shorter wavelengths (blue). The dispersion of white light into colors by a prism led Sir Isaac Newton to conclude that white light consisted of a mixture of different colors.
In a prism, dispersion causes different colors to refract at different angles, splitting white light into a rainbow of colors. In the physical sciences and electrical engineering , dispersion relations describe the effect of dispersion on the properties of waves in a medium.
Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction. How much a wave is refracted is determined by the change in wave speed and the initial direction of wave propagation relative to the direction of change in speed.
Both kinds of dispersion cause changes in the group characteristics of the wave, the features of the wave packet that change with the same frequency as the amplitude of the electromagnetic wave. "Group velocity dispersion" manifests as a spreading-out of the signal "envelope" of the radiation and can be quantified with a group dispersion delay ...
Diffraction, the apparent bending and spreading of light waves when they meet an obstruction; Dispersion; Double refraction or birefringence of calcite and other minerals; Double-slit experiment; Electroluminescence; Evanescent wave; Fluorescence, also called luminescence or photoluminescence; Mie scattering (Why clouds are white) Metamerism as ...
An example of spatial dispersion is that of visible light propagating through a crystal such as calcite, where the refractive index depends on the direction of travel (the orientation of the wavevector) with respect to the crystal structure. In such a case, although the light cannot resolve the individual atoms, they nevertheless can as an ...
Circular dichroism causes incident linearly polarized light to become elliptically polarized. The two phenomena are closely related, just as are ordinary absorption and dispersion. If the entire optical rotatory dispersion spectrum is known, the circular dichroism spectrum can be calculated, and vice versa.