Search results
Results From The WOW.Com Content Network
List comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation (set comprehension) as distinct from the use of map and filter functions.
In computer science, a generator is a routine that can be used to control the iteration behaviour of a loop.All generators are also iterators. [1] A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values.
Python's is operator may be used to compare object identities (comparison by reference), and comparisons may be chained—for example, a <= b <= c. Python uses and, or, and not as Boolean operators. Python has a type of expression named a list comprehension, and a more general expression named a generator expression. [78]
In Python, a generator is an iterator constructor: a function that returns an iterator. An example of a Python generator returning an iterator for the Fibonacci numbers using Python's yield statement follows:
Python uses an English-based syntax. Haskell replaces the set-builder's braces with square brackets and uses symbols, including the standard set-builder vertical bar. The same can be achieved in Scala using Sequence Comprehensions, where the "for" keyword returns a list of the yielded variables using the "yield" keyword. [6]
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
Python 2.5 implements better support for coroutine-like functionality, based on extended generators ; Python 3.3 improves this ability, by supporting delegating to a subgenerator ; Python 3.4 introduces a comprehensive asynchronous I/O framework as standardized in PEP 3156, which includes coroutines that leverage subgenerator delegation
pthread_yield() in the language C, a low level implementation, provided by POSIX Threads [1] std::this_thread::yield() in the language C++ , introduced in C++11 . The Yield method is provided in various object-oriented programming languages with multithreading support, such as C# and Java . [ 2 ]