When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thread safety - Wikipedia

    en.wikipedia.org/wiki/Thread_safety

    Thread safe, MT-safe: Use a mutex for every single resource to guarantee the thread to be free of race conditions when those resources are accessed by multiple threads simultaneously. Thread safety guarantees usually also include design steps to prevent or limit the risk of different forms of deadlocks , as well as optimizations to maximize ...

  3. Non-blocking algorithm - Wikipedia

    en.wikipedia.org/wiki/Non-blocking_algorithm

    An algorithm is lock-free if, when the program threads are run for a sufficiently long time, at least one of the threads makes progress (for some sensible definition of progress). All wait-free algorithms are lock-free. In particular, if one thread is suspended, then a lock-free algorithm guarantees that the remaining threads can still make ...

  4. Global interpreter lock - Wikipedia

    en.wikipedia.org/wiki/Global_Interpreter_Lock

    Schematic representation of how threads work under GIL. Green - thread holding GIL, red - blocked threads. A global interpreter lock (GIL) is a mechanism used in computer-language interpreters to synchronize the execution of threads so that only one native thread (per process) can execute basic operations (such as memory allocation and reference counting) at a time. [1]

  5. Thread-local storage - Wikipedia

    en.wikipedia.org/wiki/Thread-local_storage

    In computer programming, thread-local storage (TLS) is a memory management method that uses static or global memory local to a thread. The concept allows storage of data that appears to be global in a system with separate threads. Many systems impose restrictions on the size of the thread-local memory block, in fact often rather tight limits.

  6. Reference counting - Wikipedia

    en.wikipedia.org/wiki/Reference_counting

    Reference incrementing and decrementing uses atomic operations for thread safety. A significant amount of the work in writing bindings to GObject from high-level languages lies in adapting GObject reference counting to work with the language's own memory management system.

  7. Double-checked locking - Wikipedia

    en.wikipedia.org/wiki/Double-checked_locking

    Thread A notices that the value is not initialized, so it obtains the lock and begins to initialize the value. Due to the semantics of some programming languages, the code generated by the compiler is allowed to update the shared variable to point to a partially constructed object before A has finished performing the initialization.

  8. Fiber (computer science) - Wikipedia

    en.wikipedia.org/wiki/Fiber_(computer_science)

    The key difference between fibers and kernel threads is that fibers use cooperative context switching, instead of preemptive time-slicing. In effect, fibers extend the concurrency taxonomy: on a single computer, multiple processes can run; within a single process, multiple threads can run; within a single thread, multiple fibers can run [1]

  9. Critical section - Wikipedia

    en.wikipedia.org/wiki/Critical_section

    To enter a critical section, a thread must obtain a semaphore, which it releases on leaving the section. Other threads are prevented from entering the critical section at the same time as the original thread, but are free to gain control of the CPU and execute other code, including other critical sections that are protected by different semaphores.