When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/.../8_%2B_1/16_%2B_%E2%8B%AF

    In mathematics, the infinite series ⁠ 1 / 2 ⁠ + ⁠ 1 / 4 ⁠ + ⁠ 1 / 8 ⁠ + ⁠ 1 / 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as

  3. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...

  4. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction. Using calculus, e may also be represented as an infinite series, infinite product, or other types of limit of a sequence.

  5. Divisor sum identities - Wikipedia

    en.wikipedia.org/wiki/Divisor_sum_identities

    Let the function () denote the characteristic function of the primes, i.e., () = if and only if is prime and is zero-valued otherwise. Then as a special case of the first identity in equation (1) in section interchange of summation identities above, we can express the average order sums

  6. 1 + 2 + 4 + 8 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_4_%2B_8_%2B_%E...

    The first four partial sums of 1 + 2 + 4 + 8 + ⋯. In mathematics, 1 + 2 + 4 + 8 + ⋯ is the infinite series whose terms are the successive powers of two. As a geometric series, it is characterized by its first term, 1, and its common ratio, 2. As a series of real numbers it diverges to infinity, so the sum of this series is infinity.

  7. Aliquot sum - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sum

    1 is the only number whose aliquot sum is 0. A number is prime if and only if its aliquot sum is 1. [1] The aliquot sums of perfect, deficient, and abundant numbers are equal to, less than, and greater than the number itself respectively. [1] The quasiperfect numbers (if such numbers exist) are the numbers n whose aliquot sums equal n + 1.

  8. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Substituting r(cos θ + i sin θ) for e ix and equating real and imaginary parts in this formula gives ⁠ dr / dx ⁠ = 0 and ⁠ dθ / dx ⁠ = 1. Thus, r is a constant, and θ is x + C for some constant C. The initial values r(0) = 1 and θ(0) = 0 come from e 0i = 1, giving r = 1 and θ = x.

  9. 28 (number) - Wikipedia

    en.wikipedia.org/wiki/28_(number)

    The number 28 depicted as 28 balls arranged in a triangular pattern with the number of layers of 7 28 as the sum of four nonzero squares. Twenty-eight is a composite number and the second perfect number as it is the sum of its proper divisors: 1 + 2 + 4 + 7 + 14 = 28 {\displaystyle 1+2+4+7+14=28} .