Search results
Results From The WOW.Com Content Network
Another example is a pseudocode implementation of addition, showing how to calculate a sum of two integers a and b using bitwise operators and zero-testing: while a ≠ 0 c ← b and a b ← b xor a left shift c by 1 a ← c return b
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1] The problem is known to be NP-complete.
An instance of SubsetSum consists of a set S of positive integers and a target sum T; the goal is to decide if there is a subset of S with sum exactly T. Given such an instance, construct an instance of Partition in which the input set contains the original set plus two elements: z 1 and z 2, with z 1 = sum(S) and z 2 = 2T. The sum of this ...
Lamé's Theorem is the result of Gabriel Lamé's analysis of the complexity of the Euclidean algorithm.Using Fibonacci numbers, he proved in 1844 [1] [2] that when looking for the greatest common divisor (GCD) of two integers a and b, the algorithm finishes in at most 5k steps, where k is the number of digits (decimal) of b.
The number 1 (expressed as a fraction 1/1) is placed at the root of the tree, and the location of any other number a/b can be found by computing gcd(a,b) using the original form of the Euclidean algorithm, in which each step replaces the larger of the two given numbers by its difference with the smaller number (not its remainder), stopping when ...
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
In mathematics, a composition of an integer n is a way of writing n as the sum of a sequence of (strictly) positive integers. Two sequences that differ in the order of their terms define different compositions of their sum, while they are considered to define the same integer partition of that number. Every integer has finitely many distinct ...
return (,) Provided the floating-point arithmetic is correctly rounded to nearest (with ties resolved any way), as is the default in IEEE 754 , and provided the sum does not overflow and, if it underflows, underflows gradually , it can be proven that s + t = a + b {\displaystyle s+t=a+b} .