Search results
Results From The WOW.Com Content Network
Another example is a pseudocode implementation of addition, showing how to calculate a sum of two integers a and b using bitwise operators and zero-testing: while a ≠ 0 c ← b and a b ← b xor a left shift c by 1 a ← c return b
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1] The problem is known to be NP-complete.
The bitwise XOR (exclusive or) performs an exclusive disjunction, which is equivalent to adding two bits and discarding the carry. The result is zero only when we have two zeroes or two ones. [3] XOR can be used to toggle the bits between 1 and 0. Thus i = i ^ 1 when used in a loop toggles its values between 1 and 0. [4]
The optic equation requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c. All solutions are given by a = mn + m 2, b = mn + n 2, c = mn. This equation appears in various contexts in elementary geometry.
An instance of SubsetSum consists of a set S of positive integers and a target sum T; the goal is to decide if there is a subset of S with sum exactly T. Given such an instance, construct an instance of Partition in which the input set contains the original set plus two elements: z 1 and z 2, with z 1 = sum(S) and z 2 = 2T. The sum of this ...
The number 1 (expressed as a fraction 1/1) is placed at the root of the tree, and the location of any other number a/b can be found by computing gcd(a,b) using the original form of the Euclidean algorithm, in which each step replaces the larger of the two given numbers by its difference with the smaller number (not its remainder), stopping when ...
Like the natural numbers, is closed under the operations of addition and multiplication, that is, the sum and product of any two integers is an integer. However, with the inclusion of the negative natural numbers (and importantly, 0 ), Z {\displaystyle \mathbb {Z} } , unlike the natural numbers, is also closed under subtraction .
return (,) Provided the floating-point arithmetic is correctly rounded to nearest (with ties resolved any way), as is the default in IEEE 754 , and provided the sum does not overflow and, if it underflows, underflows gradually , it can be proven that s + t = a + b {\displaystyle s+t=a+b} .