When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly.

  3. Variation of parameters - Wikipedia

    en.wikipedia.org/wiki/Variation_of_parameters

    In mathematics, variation of parameters, also known as variation of constants, is a general method to solve inhomogeneous linear ordinary differential equations.. For first-order inhomogeneous linear differential equations it is usually possible to find solutions via integrating factors or undetermined coefficients with considerably less effort, although those methods leverage heuristics that ...

  4. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    An ODE problem can be expanded with the auxiliary variables which make the power series method trivial for an equivalent, larger system. Expanding the ODE problem with auxiliary variables produces the same coefficients (since the power series for a function is unique) at the cost of also calculating the coefficients of auxiliary equations.

  5. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    The function σ P is homogeneous of degree k in the ξ variable. The zeros of σ P , away from the zero section of T ∗ X , are the characteristics of P . A hypersurface of X defined by the equation F ( x ) = c is called a characteristic hypersurface at x if

  6. Cauchy–Euler equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Euler_equation

    In mathematics, an Euler–Cauchy equation, or Cauchy–Euler equation, or simply Euler's equation, is a linear homogeneous ordinary differential equation with variable coefficients. It is sometimes referred to as an equidimensional equation. Because of its particularly simple equidimensional structure, the differential equation can be solved ...

  7. Matrix differential equation - Wikipedia

    en.wikipedia.org/wiki/Matrix_differential_equation

    To solve a matrix ODE according to the three steps detailed above, using simple matrices in the process, let us find, say, a function x and a function y both in terms of the single independent variable t, in the following homogeneous linear differential equation of the first order,

  8. Reduction of order - Wikipedia

    en.wikipedia.org/wiki/Reduction_of_order

    Consider the general, homogeneous, second-order linear constant coefficient ordinary differential equation. (ODE) ″ + ′ + =, where ,, are real non-zero coefficients. . Two linearly independent solutions for this ODE can be straightforwardly found using characteristic equations except for the case when the discriminant, , vanish

  9. Homogeneous differential equation - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_differential...

    In this case, the change of variable y = ux leads to an equation of the form = (), which is easy to solve by integration of the two members. Otherwise, a differential equation is homogeneous if it is a homogeneous function of the unknown function and its derivatives.