When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hausdorff distance - Wikipedia

    en.wikipedia.org/wiki/Hausdorff_distance

    The Hausdorff distance is the longest distance someone can be forced to travel by an adversary who chooses a point in one of the two sets, from where they then must travel to the other set. In other words, it is the greatest of all the distances from a point in one set to the closest point in the other set.

  3. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    + represents 1/<d>, where d is the average distance between two molecules. This equation assumes the upper limit of a diffusive collision frequency between A and B is when the first neighbor layer starts to feel the evolution of the concentration gradient, whose reaction order is ⁠2 + 1 / 3 ⁠ instead of 2. Both the Smoluchowski equation and ...

  4. Voronoi diagram - Wikipedia

    en.wikipedia.org/wiki/Voronoi_diagram

    Let be a metric space with distance function .Let be a set of indices and let () be a tuple (indexed collection) of nonempty subsets (the sites) in the space .The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from .

  5. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    The denominator of this expression is the distance between P 1 and P 2. The numerator is twice the area of the triangle with its vertices at the three points, (x 0,y 0), P 1 and P 2. See: Area of a triangle § Using coordinates.

  6. Lattice constant - Wikipedia

    en.wikipedia.org/wiki/Lattice_constant

    Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ [1]. A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal.

  7. Mean inter-particle distance - Wikipedia

    en.wikipedia.org/wiki/Mean_inter-particle_distance

    We want to calculate probability distribution function of distance to the nearest neighbor (NN) particle. (The problem was first considered by Paul Hertz; [1] for a modern derivation see, e.g.,. [2]) Let us assume particles inside a sphere having volume , so that = /. Note that since the particles in the ideal gas are non-interacting, the ...

  8. Cellular automaton - Wikipedia

    en.wikipedia.org/wiki/Cellular_automaton

    The simplest nontrivial cellular automaton would be one-dimensional, with two possible states per cell, and a cell's neighbors defined as the adjacent cells on either side of it. A cell and its two neighbors form a neighborhood of 3 cells, so there are 2 3 = 8 possible patterns for a neighborhood. A rule consists of deciding, for each pattern ...

  9. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is the start and which is the destination. [11] It is positive, meaning that the distance between every two distinct points is a positive number, while the distance from any point to itself is zero. [11]