Ad
related to: example of carriers in photosynthesis and cellular respiration diagram
Search results
Results From The WOW.Com Content Network
The main role of these is to transport hydrogen atom to electron transport chain which will change ADP to ATP by adding one phosphate during metabolic processes (e.g. photosynthesis and respiration). Hydrogen carrier participates in an oxidation-reduction reaction [2] by getting reduced due to the
The organic or inorganic substances (e.g., oxygen) used as electron acceptors needed in the catabolic processes of aerobic or anaerobic respiration and fermentation are not taken into account here. For example, plants are lithotrophs because they use water as their electron donor for the electron transport chain across the thylakoid membrane.
Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products. [1] Cellular respiration is a vital process that occurs in the cells of all living organisms.
Cyanobacteria such as these carry out photosynthesis.Their emergence foreshadowed the evolution of many photosynthetic plants and oxygenated Earth's atmosphere.. Biological carbon fixation, or сarbon assimilation, is the process by which living organisms convert inorganic carbon (particularly carbon dioxide, CO 2) to organic compounds.
The electron transport chain of photosynthesis is often put in a diagram called the Z-scheme, because the redox diagram from P680 to P700 resembles the letter Z. [3] The final product of PSII is plastoquinol , a mobile electron carrier in the membrane.
An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H +) across a membrane during cellular respiration or photosynthesis. An ion gradient has potential energy and can be used to power chemical reactions when the ions pass through a channel (red).
Ultimately, the electrons that are transferred by Photosystem I are used to produce the moderate-energy hydrogen carrier NADPH. [2] The photon energy absorbed by Photosystem I also produces a proton-motive force that is used to generate ATP. PSI is composed of more than 110 cofactors, significantly more than Photosystem II. [3]
The carriers in the electron transport chain use some of the electron's energy to actively transport protons from the stroma to the lumen. During photosynthesis, the lumen becomes acidic, as low as pH 4, compared to pH 8 in the stroma. [30] This represents a 10,000 fold concentration gradient for protons across the thylakoid membrane.