When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Power-law fluid - Wikipedia

    en.wikipedia.org/wiki/Power-law_fluid

    A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate: = These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.

  3. Plume (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Plume_(fluid_dynamics)

    The resulting body of polluted water within an aquifer is called a plume, with its migrating edges called plume fronts. Plumes are used to locate, map, and measure water pollution within the aquifer's total body of water, and plume fronts to determine directions and speed of the contamination's spreading in it.

  4. Herschel–Bulkley fluid - Wikipedia

    en.wikipedia.org/wiki/Herschel–Bulkley_fluid

    In one dimension, the constitutive equation of the Herschel-Bulkley model after the yield stress has been reached can be written in the form: [3] [4] ˙ =, < = + ˙, where is the shear stress [Pa], the yield stress [Pa], the consistency index [Pa s], ˙ the shear rate [s], and the flow index [dimensionless].

  5. Eventual consistency - Wikipedia

    en.wikipedia.org/wiki/Eventual_consistency

    Eventual consistency is a weak guarantee – most stronger models, like linearizability, are trivially eventually consistent. Eventually-consistent services are often classified as providing BASE semantics (basically-available, soft-state, eventual consistency), in contrast to traditional ACID (atomicity, consistency, isolation, durability) .

  6. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    This can be used to calculate mean values (expectations) of the flow rates, head losses or any other variables of interest in the pipe network. This analysis has been extended using a reduced-parameter entropic formulation, which ensures consistency of the analysis regardless of the graphical representation of the network. [ 3 ]

  7. Hydrodynamic stability - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamic_stability

    A key tool used to determine the stability of a flow is the Reynolds number (Re), first put forward by George Gabriel Stokes at the start of the 1850s. Associated with Osborne Reynolds who further developed the idea in the early 1880s, this dimensionless number gives the ratio of inertial terms and viscous terms. [4]

  8. Standard step method - Wikipedia

    en.wikipedia.org/wiki/Standard_Step_Method

    It uses a combination of the energy, momentum, and continuity equations to determine water depth with a given a friction slope (), channel slope (), channel geometry, and also a given flow rate. In practice, this technique is widely used through the computer program HEC-RAS , developed by the US Army Corps of Engineers Hydrologic Engineering ...

  9. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    Thus for an incompressible inviscid fluid the specific internal energy is constant along the flow lines, also in a time-dependent flow. The pressure in an incompressible flow acts like a Lagrange multiplier , being the multiplier of the incompressible constraint in the energy equation, and consequently in incompressible flows it has no ...