Search results
Results From The WOW.Com Content Network
The protein complex composed of actin and myosin is sometimes referred to as actomyosin. In striated skeletal and cardiac muscle tissue the actin and myosin filaments each have a specific and constant length on the order of a few micrometers, far less than the length of the elongated muscle cell (a few millimeters in the case of human skeletal ...
The protein complex composed of actin and myosin, contractile proteins, is sometimes referred to as actomyosin.In striated skeletal and cardiac muscle, the actin and myosin filaments each have a specific and constant length in the order of a few micrometers, far less than the length of the elongated muscle cell (up to several centimeters in some skeletal muscle cells). [5]
The unusual microscopic anatomy of a muscle cell gave rise to its terminology. The cytoplasm in a muscle cell is termed the sarcoplasm; the smooth endoplasmic reticulum of a muscle cell is termed the sarcoplasmic reticulum; and the cell membrane in a muscle cell is termed the sarcolemma. [9]
It contains mostly myofibrils (which are composed of sarcomeres), but its contents are otherwise comparable to those of the cytoplasm of other cells. It has a Golgi apparatus near the nucleus , mitochondria just inside the cell membrane ( sarcolemma ), and a smooth endoplasmic reticulum (specialized for muscle function and called the ...
This complex mechanism illustrates systole of the heart. Cardiac muscle cells, unlike most other tissues in the body, rely on an available blood and electrical supply to deliver oxygen and nutrients and to remove waste products such as carbon dioxide. The coronary arteries help fulfill this function.
T-tubules (transverse tubules) are extensions of the cell membrane that penetrate into the center of skeletal and cardiac muscle cells.With membranes that contain large concentrations of ion channels, transporters, and pumps, T-tubules permit rapid transmission of the action potential into the cell, and also play an important role in regulating cellular calcium concentration.
Structure of a skeletal muscle. A key component in lateral force transmission in skeletal muscle is the extracellular matrix (ECM). Skeletal muscle is a complex biological material that is composed of muscle fibers and an ECM consisting of the epimysium, perimysium, and endomysium.
The dystrophin-associated protein complex, also known as the dystrophin-associated glycoprotein complex is a multiprotein complex that includes dystrophin and the dystrophin-associated proteins. [1] It is one of the two protein complexes that make up the costamere in striated muscle cells. The other complex is the integrin-vinculin-talin complex.