When.com Web Search

  1. Ad

    related to: complete fibonacci sequence

Search results

  1. Results From The WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    The Fibonacci numbers are also an example of a complete sequence. This means that every positive integer can be written as a sum of Fibonacci numbers, where any one number is used once at most. This means that every positive integer can be written as a sum of Fibonacci numbers, where any one number is used once at most.

  3. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci

    The solution, generation by generation, was a sequence of numbers later known as Fibonacci numbers. Although Fibonacci's Liber Abaci contains the earliest known description of the sequence outside of India, the sequence had been described by Indian mathematicians as early as the sixth century. [30] [31] [32] [33]

  4. Complete sequence - Wikipedia

    en.wikipedia.org/wiki/Complete_sequence

    For example, the sequence of powers of two (1, 2, 4, 8, ...), the basis of the binary numeral system, is a complete sequence; given any natural number, we can choose the values corresponding to the 1 bits in its binary representation and sum them to obtain that number (e.g. 37 = 100101 2 = 1 + 4 + 32). This sequence is minimal, since no value ...

  5. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    A Fibonacci sequence of order n is an integer sequence in which each sequence element is the sum of the previous elements (with the exception of the first elements in the sequence). The usual Fibonacci numbers are a Fibonacci sequence of order 2.

  6. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    Recamán's sequence: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. A005132: Look-and ...

  7. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    where F n is the n th Fibonacci number. Such a sum is called the Zeckendorf representation of N. The Fibonacci coding of N can be derived from its Zeckendorf representation. For example, the Zeckendorf representation of 64 is 64 = 55 + 8 + 1. There are other ways of representing 64 as the sum of Fibonacci numbers 64 = 55 + 5 + 3 + 1 64 = 34 ...

  8. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    Plot of the first 10,000 Pisano periods. In number theory, the nth Pisano period, written as π (n), is the period with which the sequence of Fibonacci numbers taken modulo n repeats.

  9. Liber Abaci - Wikipedia

    en.wikipedia.org/wiki/Liber_Abaci

    A page of the Liber Abaci from the National Central Library.The list on the right shows the numbers 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 (the Fibonacci sequence).