When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Involute gear - Wikipedia

    en.wikipedia.org/wiki/Involute_gear

    Meshing of two spur gears with involute external teeth. z 1 = 20, z 2 = 50, α = 20°, ξ 1 = ξ 2 = 0, ISO 53:1998. The lower (green) gear is the driving one. The line of contact, which is the locus of all teeth contact points, is shown in blue.

  3. Gear - Wikipedia

    en.wikipedia.org/wiki/Gear

    The locus of successive contact points between a pair of gear teeth, during the phase of engagement. For conjugate gear teeth, the path of action passes through the pitch point. It is the trace of the surface of action in the plane of rotation. Line of action The path of action for involute gears.

  4. Contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Contact_mechanics

    It gives the contact stress as a function of the normal contact force, the radii of curvature of both bodies and the modulus of elasticity of both bodies. Hertzian contact stress forms the foundation for the equations for load bearing capabilities and fatigue life in bearings, gears, and any other bodies where two surfaces are in contact.

  5. Involute - Wikipedia

    en.wikipedia.org/wiki/Involute

    The most common profiles of modern gear teeth are involutes of a circle. In an involute gear system, the teeth of two meshing gears contact at a single instantaneous point that follows along a single straight line of action. The forces the contacting teeth exert on each other also follow this line and are normal to the teeth.

  6. List of gear nomenclature - Wikipedia

    en.wikipedia.org/wiki/List_of_gear_nomenclature

    A crossed helical gear is a gear that operate on non-intersecting, non-parallel axes. The term crossed helical gears has superseded the term spiral gears. There is theoretically point contact between the teeth at any instant. They have teeth of the same or different helix angles, of the same or opposite hand.

  7. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  8. Ackermann steering geometry - Wikipedia

    en.wikipedia.org/wiki/Ackermann_steering_geometry

    The intention of Ackermann geometry is to avoid the need for tyres to slip sideways when following the path around a curve. [2] The geometrical solution to this is for all wheels to have their axles arranged as radii of circles with a common centre point. As the rear wheels are fixed, this centre point must be on a line extended from the rear axle.

  9. Straight-line mechanism - Wikipedia

    en.wikipedia.org/wiki/Straight-line_mechanism

    Originally an ellipsograph. As a mechanism, it uses the fact that a circle and a straight line are special cases of an ellipse. It is based on much the same kinematic principle as Cardan's straight line mechanism (above) and could be considered as a spur gear with two teeth in a ring gear with four teeth. It has been used in the Baker-Cross ...