Search results
Results From The WOW.Com Content Network
Secondary aquatic adaptations tend to develop in early speciation as the animal ventures into water in order to find available food. As successive generations spend more time in the water, natural selection causes the acquisition of more adaptations. Animals of later generations may spend most their life in the water, coming ashore for mating.
Euryhaline organisms are able to adapt to a wide range of salinities. An example of a euryhaline fish is the short-finned molly, Poecilia sphenops, which can live in fresh water, brackish water, or salt water. The green crab (Carcinus maenas) is an example of a
Wading and bottom-feeding animals (e.g. moose and manatee) need to be heavier than water in order to keep contact with the floor or to stay submerged, surface-living animals (e.g. otters) need the opposite, and free-swimming animals living in open waters (e.g. dolphins) need to be neutrally buoyant in order to be able to swim up and down the ...
Sleeping the season away. If an animal’s physiology, diet, or other characteristics don’t allow it to stay warm and/or find sufficient food during the winter, an additional set of survival ...
Biomechanically this is a unique and extreme feeding method, for which the animal at first must accelerate to gain enough momentum to fold its elastic throat (buccal cavity) around the volume of water to be swallowed. [25] Subsequently, the water flows back through the baleen, keeping back the food particles.
The physiology of underwater diving is the physiological adaptations to diving of air-breathing vertebrates that have returned to the ocean from terrestrial lineages. They are a diverse group that include sea snakes, sea turtles, the marine iguana, saltwater crocodiles, penguins, pinnipeds, cetaceans, sea otters, manatees and dugongs.
Trump Media & Technology Group stock ()closed over 15% higher Friday and was briefly halted for volatility after Donald Trump said he would not sell his shares in the company, the home of Trump's ...
Aquatic animals generally conduct gas exchange in water by extracting dissolved oxygen via specialised respiratory organs called gills, through the skin or across enteral mucosae, although some are evolved from terrestrial ancestors that re-adapted to aquatic environments (e.g. marine reptiles and marine mammals), in which case they actually ...