Search results
Results From The WOW.Com Content Network
In such applications, radiative transfer codes are often called radiation parameterization. In these applications, the radiative transfer codes are used in forward sense, i.e. on the basis of known properties of the atmosphere, one calculates heating rates, radiative fluxes, and radiances. There are efforts for intercomparison of radiation codes.
Pages in category "Atmospheric radiative transfer codes" The following 16 pages are in this category, out of 16 total. This list may not reflect recent changes .
Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of ...
Once that happens, radiation can travel far enough that the local emission, B λ (T), can differ from the absorption of incoming I λ. The altitude where the transition to semi-transparency occurs is referred to as the "effective emission altitude" or "effective radiating level." Thermal radiation from this altitude is able to escape to space.
Pages in category "Scattering, absorption and radiative transfer codes" The following 2 pages are in this category, out of 2 total. This list may not reflect recent changes .
RTTOV - the fast radiative transfer model for calculations of radiances for satellite infrared or microwave nadir scanning radiometers (see push broom scanner). Given an atmospheric profile of temperature, variable gas concentrations, cloud and surface properties RTTOV calculates radiances and brightness temperatures .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
ARTS (Atmospheric Radiative Transfer Simulator) is a widely used [2] atmospheric radiative transfer simulator for infrared, microwave, and sub-millimeter wavelengths. [3] While the model is developed by a community, core development is done by the University of Hamburg and Chalmers University, with previous participation from Luleå University of Technology and University of Bremen.