Search results
Results From The WOW.Com Content Network
It is unknown whether these constants are transcendental in general, but Γ( 1 / 3 ) and Γ( 1 / 4 ) were shown to be transcendental by G. V. Chudnovsky. Γ( 1 / 4 ) / 4 √ π has also long been known to be transcendental, and Yuri Nesterenko proved in 1996 that Γ( 1 / 4 ), π, and e π are algebraically independent.
Color representation of the trigamma function, ψ 1 (z), in a rectangular region of the complex plane.It is generated using the domain coloring method.. In mathematics, the trigamma function, denoted ψ 1 (z) or ψ (1) (z), is the second of the polygamma functions, and is defined by
The only one on the positive real axis is the unique minimum of the real-valued gamma function on R + at x 0 = 1.461 632 144 968 362 341 26.... All others occur single between the poles on the negative axis: x 1 = −0.504 083 008 264 455 409 25... x 2 = −1.573 498 473 162 390 458 77... x 3 = −2.610 720 868 444 144 650 00... x 4 = −3.635 ...
Graphs of the polygamma functions ψ, ψ (1), ψ (2) and ψ (3) of real arguments Plot of the digamma function, the first polygamma function, in the complex plane from −2−2i to 2+2i with colors created by Mathematica's function ComplexPlot3D showing one cycle of phase shift around each pole and the zero
In q-analog theory, the -gamma function, or basic gamma function, is a generalization of the ordinary gamma function closely related to the double gamma function. It was introduced by Jackson (1905) .
Repeated application of the recurrence relation for the lower incomplete gamma function leads to the power series expansion: [2] (,) = = (+) (+) = = (+ +). Given the rapid growth in absolute value of Γ(z + k) when k → ∞, and the fact that the reciprocal of Γ(z) is an entire function, the coefficients in the rightmost sum are well-defined, and locally the sum converges uniformly for all ...
[4] The gamma distribution is the maximum entropy probability distribution (both with respect to a uniform base measure and a / base measure) for a random variable X for which E[X] = αθ = α/λ is fixed and greater than zero, and E[ln X] = ψ(α) + ln θ = ψ(α) − ln λ is fixed (ψ is the digamma function). [5]
In addition, a shift parameter can be added, so the domain of x starts at some value other than zero. [3] If the restrictions on the signs of a, d and p are also lifted (but α = d/p remains positive), this gives a distribution called the Amoroso distribution, after the Italian mathematician and economist Luigi Amoroso who described it in 1925. [4]