When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    Thus to compare residuals at different inputs, one needs to adjust the residuals by the expected variability of residuals, which is called studentizing. This is particularly important in the case of detecting outliers, where the case in question is somehow different from the others in a dataset. For example, a large residual may be expected in ...

  3. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    These deviations are called residuals when the calculations are performed over the data sample that was used for estimation (and are therefore always in reference to an estimate) and are called errors (or prediction errors) when computed out-of-sample (aka on the full set, referencing a true value rather than an estimate). The RMSD serves to ...

  4. Residual sum of squares - Wikipedia

    en.wikipedia.org/wiki/Residual_sum_of_squares

    In statistics, the residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared estimate of errors (SSE), is the sum of the squares of residuals (deviations predicted from actual empirical values of data).

  5. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    The denominator is the sample size reduced by the number of model parameters estimated from the same data, (n−p) for p regressors or (n−p−1) if an intercept is used (see errors and residuals in statistics for more details). [7]

  6. PRESS statistic - Wikipedia

    en.wikipedia.org/wiki/PRESS_statistic

    Models that are over-parameterised (over-fitted) would tend to give small residuals for observations included in the model-fitting but large residuals for observations that are excluded. The PRESS statistic has been extensively used in lazy learning and locally linear learning to speed-up the assessment and the selection of the neighbourhood size.

  7. Mean squared prediction error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_prediction_error

    Mean squared error; Errors and residuals in statistics; Law of total variance; Mallows's C p; Model selection; References This page was last edited on 15 November ...

  8. Residual (numerical analysis) - Wikipedia

    en.wikipedia.org/wiki/Residual_(numerical_analysis)

    When one does not know the exact solution, one may look for the approximation with small residual. Residuals appear in many areas in mathematics, including iterative solvers such as the generalized minimal residual method , which seeks solutions to equations by systematically minimizing the residual.

  9. Lack-of-fit sum of squares - Wikipedia

    en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares

    In statistics, a sum of squares due to lack of fit, ... One then partitions the "sum of squares due to error", i.e., the sum of squares of residuals, into two components: