Search results
Results From The WOW.Com Content Network
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
However, it is a useful algorithm for multiple pattern search. To find any of a large number, say k, fixed length patterns in a text, a simple variant of the Rabin–Karp algorithm uses a Bloom filter or a set data structure to check whether the hash of a given string belongs to a set of hash values of patterns we are looking for:
P denotes the string to be searched for, called the pattern. Its length is m. S[i] denotes the character at index i of string S, counting from 1. S[i..j] denotes the substring of string S starting at index i and ending at j, inclusive. A prefix of S is a substring S[1..i] for some i in range [1, l], where l is the length of S.
The closeness of a match is measured in terms of the number of primitive operations necessary to convert the string into an exact match. This number is called the edit distance between the string and the pattern. The usual primitive operations are: [1] insertion: cot → coat; deletion: coat → cot
In computer science, an algorithm for matching wildcards (also known as globbing) is useful in comparing text strings that may contain wildcard syntax. [1] Common uses of these algorithms include command-line interfaces, e.g. the Bourne shell [2] or Microsoft Windows command-line [3] or text editor or file manager, as well as the interfaces for some search engines [4] and databases. [5]
Tree patterns are used in some programming languages as a general tool to process data based on its structure, e.g. C#, [1] F#, [2] Haskell, [3] Java [4], ML, Python, [5] Ruby, [6] Rust, [7] Scala, [8] Swift [9] and the symbolic mathematics language Mathematica have special syntax for expressing tree patterns and a language construct for ...
A regex pattern matches a target string. The pattern is composed of a sequence of atoms. An atom is a single point within the regex pattern which it tries to match to the target string. The simplest atom is a literal, but grouping parts of the pattern to match an atom will require using ( ) as metacharacters.
It is a simplification of the Boyer–Moore string-search algorithm which is related to the Knuth–Morris–Pratt algorithm. The algorithm trades space for time in order to obtain an average-case complexity of O(n) on random text, although it has O(nm) in the worst case, where the length of the pattern is m and the length of the search string ...