Search results
Results From The WOW.Com Content Network
In coordination chemistry and crystallography, the geometry index or structural parameter (τ) is a number ranging from 0 to 1 that indicates what the geometry of the coordination center is. The first such parameter for 5-coordinate compounds was developed in 1984. [ 1 ]
Raising and lowering is then done in coordinates. Given a vector with components , we can contract with the metric to obtain a covector: = and this is what we mean by lowering the index. Conversely, contracting a covector with the inverse metric gives a vector:
Geometric constraint solving is constraint satisfaction in a computational geometry setting, which has primary applications in computer aided design. [1] A problem to be solved consists of a given set of geometric elements and a description of geometric constraints between the elements, which could be non-parametric (tangency, horizontality, coaxiality, etc) or parametric (like distance, angle ...
The genus of a 3-dimensional handlebody is an integer representing the maximum number of cuttings along embedded disks without rendering the resultant manifold disconnected. It is equal to the number of handles on it. For instance: A ball has genus 0. A solid torus D 2 × S 1 has genus 1.
and further, G does not act on this geometry, nor does it reflect any of the non-abelian structure (in both cases because the quotient is abelian). However, it is an elementary result, which can be seen concretely as follows: the set of normal subgroups of a given index p form a projective space, namely the projective space
The Apollonian circles are two 1-parameter families determined by 2 points. As is well known, three non-collinear points determine a circle in Euclidean geometry and two distinct points determine a pencil of circles such as the Apollonian circles. These results seem to run counter the general result since circles are special cases of conics.
In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem.
When counting electrons for each cluster, the number of valence electrons is enumerated. For each transition metal present, 10 electrons are subtracted from the total electron count. For example, in Rh 6 (CO) 16 the total number of electrons would be 6 × 9 + 16 × 2 − 6 × 10 = 86 – 60 = 26.