Search results
Results From The WOW.Com Content Network
An example of data mining related to an integrated-circuit (IC) production line is described in the paper "Mining IC Test Data to Optimize VLSI Testing." [12] In this paper, the application of data mining and decision analysis to the problem of die-level functional testing is described. Experiments mentioned demonstrate the ability to apply a ...
Sensitivity analysis can be usefully applied to business problem, allowing the identification of those variables which may influence a business decision, such as e.g. an investment. [ 1 ] In a decision problem, the analyst may want to identify cost drivers as well as other quantities for which we need to acquire better knowledge to make an ...
For example, for some vendors, a HOLAP database will use relational tables to hold the larger quantities of detailed data and use specialized storage for at least some aspects of the smaller quantities of more-aggregate or less-detailed data. HOLAP addresses the shortcomings of MOLAP and ROLAP by combining the capabilities of both approaches ...
Business analytics makes extensive use of analytical modeling and numerical analysis, including explanatory and predictive modeling, [2] and fact-based management to drive decision making. It is therefore closely related to management science. Analytics may be used as input for human decisions or may drive fully automated decisions.
Techno-economic assessment or techno-economic analysis (abbreviated TEA) is a method of analyzing the economic performance of an industrial process, product, or service. The methodology originates from earlier work on combining technical, economic and risk assessments for chemical production processes. [ 1 ]
Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science, and social science domains. [2] In today's business world, data analysis plays a role in making decisions more scientific and helping businesses operate more effectively. [3]
In this example a company should prefer product B's risk and payoffs under realistic risk preference coefficients. Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making (both in daily life and in settings such as business, government and medicine).
Symbolic data analysis (SDA) is an extension of standard data analysis where symbolic data tables are used as input and symbolic objects are made output as a result. The data units are called symbolic since they are more complex than standard ones, as they not only contain values or categories, but also include internal variation and structure.