When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. [1][2] Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents. On retrieval, the calculation is repeated ...

  3. Computation of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Computation_of_cyclic...

    Computation of a cyclic redundancy check is derived from the mathematics of polynomial division, modulo two. In practice, it resembles long division of the binary message string, with a fixed number of zeroes appended, by the "generator polynomial" string except that exclusive or operations replace subtractions.

  4. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  5. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  6. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    explicitly showing its relationship with Euclidean division. However, the b here need not be the remainder in the division of a by m. Rather, a ≡ b (mod m) asserts that a and b have the same remainder when divided by m. That is, a = p m + r, b = q m + r, where 0 ≤ r < m is the common remainder.

  7. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    The cyclic redundancy check (CRC) is based on division in the ring of polynomials over the finite field GF (2) (the integers modulo 2), that is, the set of polynomials where each coefficient is either zero or one, and arithmetic operations wrap around. Any string of bits can be interpreted as the coefficients of a message polynomial of this ...

  8. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    The following table shows how the extended Euclidean algorithm proceeds with input 240 and 46. The greatest common divisor is the last non zero entry, 2 in the column "remainder". The computation stops at row 6, because the remainder in it is 0. Bézout coefficients appear in the last two entries of the second-to-last row.

  9. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    hide. For the acrobatic movement, roundoff, see Roundoff. In computing, a roundoff error, [ 1 ] also called rounding error, [ 2 ] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [ 3 ]