Search results
Results From The WOW.Com Content Network
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related: () = = () always holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment might be strict).
Binary relations are set-theoretical name sets. Already in 1960, Bourbaki represented and studied a binary relation between sets A and B in the form of a name set (A, G, B), where G is a graph of the binary relation, i.e., a set of pairs, for which the first projection is a subset of A and the second projection is a subset of B (Bourbaki, 1960).
8 Ways of defining sets/Relation to descriptive set theory. 9 More general objects still called sets. 10 See also. Toggle the table of contents. List of types of sets.
A set is described by listing elements separated by commas, or by a characterizing property of its elements, within braces { }. [8] Since sets are objects, the membership relation can relate sets as well, i.e., sets themselves can be members of other sets. A derived binary relation between two sets is the subset relation, also called set inclusion.
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Every set is a projective object in Set (assuming the axiom of choice). The finitely presentable objects in Set are the finite sets. Since every set is a direct limit of its finite subsets, the category Set is a locally finitely presentable category. If C is an arbitrary category, the contravariant functors from C to Set are often an important ...