Search results
Results From The WOW.Com Content Network
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...
The information–action ratio is a concept coined by cultural critic Neil Postman in his work Amusing Ourselves to Death.In short, Postman meant to indicate the relationship between a piece of information and what action, if any, a consumer of that information might reasonably be expected to take once learning it.
Postman started in 2012 as a side project of software engineer Abhinav Asthana, who wanted to simplify API testing while working at Yahoo Bangalore. [7] He named his app Postman – a play on the API request “POST” – and offered it free in the Chrome Web Store. As the app's usage grew to 500,000 users with no marketing, Abhinav recruited ...
In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret, [1] shorter training times, [2]
Examples of categorical features include gender, color, and zip code. Categorical features typically need to be converted to numerical features before they can be used in machine learning algorithms. This can be done using a variety of techniques, such as one-hot encoding, label encoding, and ordinal encoding.
One method conjectured by Good and Hardin is =, where is the sample size, is the number of independent variables and is the number of observations needed to reach the desired precision if the model had only one independent variable. [24] For example, a researcher is building a linear regression model using a dataset that contains 1000 patients ().
In machine learning, a linear classifier makes a classification decision for each object based on a linear combination of its features.Such classifiers work well for practical problems such as document classification, and more generally for problems with many variables (), reaching accuracy levels comparable to non-linear classifiers while taking less time to train and use.