Search results
Results From The WOW.Com Content Network
One class of examples is the staggered geometric progressions ... the rate of convergence and order of convergence of a sequence ... of some problem that ...
They are an example of a class of techniques called multiresolution methods, very useful in problems exhibiting multiple scales of behavior. For example, many basic relaxation methods exhibit different rates of convergence for short- and long-wavelength components, suggesting these different scales be treated differently, as in a Fourier ...
The rate of convergence is distinguished from the number of iterations required to reach a given accuracy. For example, the function f(x) = x 20 − 1 has a root at 1. Since f ′(1) ≠ 0 and f is smooth, it is known that any Newton iteration convergent to 1 will converge quadratically. However, if initialized at 0.5, the first few iterates of ...
However, when applied to a twice continuously differentiable function, the LJ heuristic is a proper iterative method, that generates a sequence that has a convergent subsequence; for this class of problems, Newton's method is recommended and enjoys a quadratic rate of convergence, while no convergence rate analysis has been given for the LJ ...
A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).
Having looked at this properly now, it looks like the problems with the discretization section root in a series of well-justified but only partially-executed simplifications that focused the rest of the article on numerical analysis and on Q-convergence at the expense of rates of convergence in real analysis, dynamical systems, o-notation (o ...
Problems. Classification; ... How can one control the rate of convergence ... Finally an example of a VC-subgraph class is considered.
An example of Richardson extrapolation method in two dimensions. In numerical analysis , Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value A ∗ = lim h → 0 A ( h ) {\displaystyle A^{\ast }=\lim _{h\to 0}A(h)} .