Ad
related to: jahn teller distortion octahedral machine learning project
Search results
Results From The WOW.Com Content Network
The Jahn–Teller effect (JT effect or JTE) is an important mechanism of spontaneous symmetry breaking in molecular and solid-state systems which has far-reaching consequences in different fields, and is responsible for a variety of phenomena in spectroscopy, stereochemistry, crystal chemistry, molecular and solid-state physics, and materials science.
Second-order Jahn-Teller distortion provides a rigorous and first-principles approach to the distortion problem. The interactions between the HOMOs and LUMOs to afford a new set of molecular orbitals is an example of second-order Jahn-Teller distortion.
The pseudo Jahn–Teller effect (PJTE), occasionally also known as second-order JTE, is a direct extension of the Jahn–Teller effect (JTE) where spontaneous symmetry breaking in polyatomic systems (molecules and solids) occurs even when the relevant electronic states are not degenerate. The PJTE can occur under the influence of sufficiently ...
The prominent shoulder in this absorption band is due to a Jahn–Teller distortion which removes the degeneracy of the two 2 E g states. However, since these two transitions overlap in a UV-vis spectrum, this transition from 2 T 2g to 2 E g does not require a Tanabe–Sugano diagram.
The term can also refer to octahedral influenced by the Jahn–Teller effect, which is a common phenomenon encountered in coordination chemistry. This reduces the symmetry of the molecule from O h to D 4h and is known as a tetragonal distortion.
Known for his "life-long years of experience in theoretical chemistry" [1] working on the electronic structure and properties of coordination compounds, Isaac B. Bersuker is “one of the most widely recognized authorities” [2] in the theory of the Jahn–Teller effect (JTE) and the pseudo-Jahn–Teller effect (PJTE).
English: A conceptual comparison of the Jahn-Teller and pseudo Jahn-Teller effects, showing the mutual relation of two potential energy surfaces (PES) in the two cases. The number of PES is two in this picture but it can be more in actual molecular or solid-state systems.
the Jahn-Teller effect is a pretty advanced topic in chemistry and a reader would really benefit from some groundwork, octahedral complex would be preferable over octahedral complex. See also the AXE method, most molecular geometries are still missing. V8rik 20:07, 12 July 2005 (UTC)