Search results
Results From The WOW.Com Content Network
A composite number with two prime factors is a semiprime or 2-almost prime (the factors need not be distinct, hence squares of primes are included). A composite number with three distinct prime factors is a sphenic number. In some applications, it is necessary to differentiate between composite numbers with an odd number of distinct prime ...
If n is an odd composite integer that satisfies the above congruence, then n is called an Euler–Jacobi pseudoprime (or, more commonly, an Euler pseudoprime) to base a. As long as a is not a multiple of n (usually 2 ≤ a < n ), then if a and n are not coprime, n is definitely composite, as 1 < gcd ( a , n ) < n is a factor of n .
In mathematics, an odd composite integer n is called an Euler pseudoprime to base a, if a and n are coprime, and / ()(where mod refers to the modulo operation).. The motivation for this definition is the fact that all prime numbers p satisfy the above equation which can be deduced from Fermat's little theorem.
While all prime n pass this test, a composite n passes it if and only if n is a Frobenius pseudoprime for (,) = (,). Similar to the above example, Khashin notes that no pseudoprime has been found for his test. He further shows that any that exist under 2 60 must have a factor less than 19 or have c > 128.
Even and odd numbers: An integer is even if it is a multiple of 2, and is odd otherwise. Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive ...
For an integer a > 1, if a composite integer x divides a x−1 − 1, then x is called a Fermat pseudoprime to base a. It follows that if x is a Fermat pseudoprime to base a, then x is coprime to a. Some sources use variations of this definition, for example to allow only odd numbers to be pseudoprimes. [3]
More extensive calculations show that, with this method of choosing D, P, and Q, there are only five odd, composite numbers less than 10 15 for which congruence is true. [8] If (and GCD(n, Q) = 1), then an Euler–Jacobi probable prime test to the base Q can also be implemented at minor computational cost.
For a fixed base a, it is unusual for a composite number to be a probable prime (that is, a pseudoprime) to that base. For example, up to 25 × 10 9, there are 11,408,012,595 odd composite numbers, but only 21,853 pseudoprimes base 2. [1]: 1005 The number of odd primes in the same interval is 1,091,987,404.