When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    The optimized gradient method (OGM) [26] reduces that constant by a factor of two and is an optimal first-order method for large-scale problems. [27] For constrained or non-smooth problems, Nesterov's FGM is called the fast proximal gradient method (FPGM), an acceleration of the proximal gradient method.

  3. Proximal gradient methods for learning - Wikipedia

    en.wikipedia.org/wiki/Proximal_gradient_methods...

    Proximal gradient methods are applicable in a wide variety of scenarios for solving convex optimization problems of the form + (),where is convex and differentiable with Lipschitz continuous gradient, is a convex, lower semicontinuous function which is possibly nondifferentiable, and is some set, typically a Hilbert space.

  4. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    In the standard form it is possible to assume, without loss of generality, that the objective function f is a linear function.This is because any program with a general objective can be transformed into a program with a linear objective by adding a single variable t and a single constraint, as follows: [9]: 1.4

  5. LOBPCG - Wikipedia

    en.wikipedia.org/wiki/LOBPCG

    Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) is a matrix-free method for ... [55] The latter approach has been later implemented in Python ...

  6. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  7. Frank–Wolfe algorithm - Wikipedia

    en.wikipedia.org/wiki/Frank–Wolfe_algorithm

    The Frank–Wolfe algorithm is an iterative first-order optimization algorithm for constrained convex optimization.Also known as the conditional gradient method, [1] reduced gradient algorithm and the convex combination algorithm, the method was originally proposed by Marguerite Frank and Philip Wolfe in 1956. [2]

  8. Barzilai-Borwein method - Wikipedia

    en.wikipedia.org/wiki/Barzilai-Borwein_method

    The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...

  9. Least mean squares filter - Wikipedia

    en.wikipedia.org/wiki/Least_mean_squares_filter

    The basic idea behind LMS filter is to approach the optimum filter weights (), by updating the filter weights in a manner to converge to the optimum filter weight. This is based on the gradient descent algorithm.