Search results
Results From The WOW.Com Content Network
Deoxyribonuclease II (DNase II) is also known as acid deoxyribonuclease because it has optimal activity in the low pH environment of lysosomes where it is typically found in higher eukaryotes. Some forms of recombinant DNase II display a high level of activity in low pH in the absence of divalent metal ions, similar to eukaryotic DNase II. [7]
Deoxyribonuclease II (EC 3.1.22.1, DNase II, pancreatic DNase II, deoxyribonucleate 3'-nucleotidohydrolase, pancreatic DNase II, acid deoxyribonuclease, acid DNase) is an endonuclease that hydrolyzes phosphodiester linkages of deoxyribonucleotide in native and denatured DNA, yielding products with 3'-phosphates and 5'-hydroxyl ends, which occurs as a result of single-strand cleaving mechanism. [1]
Type I site-specific deoxyribonuclease (EC 3.1.21.3, type I restriction enzyme, deoxyribonuclease (ATP- and S-adenosyl-L-methionine-dependent), restriction-modification system, deoxyribonuclease (adenosine triphosphate-hydrolyzing), adenosine triphosphate-dependent deoxyribonuclease, ATP-dependent DNase, type 1 site-specific deoxyribonuclease) is an enzyme. [1]
Deoxyribonuclease I (usually called DNase I), is an endonuclease of the DNase family coded by the human gene DNASE1. [5] DNase I is a nuclease that cleaves DNA preferentially at phosphodiester linkages adjacent to a pyrimidine nucleotide, yielding 5'-phosphate-terminated polynucleotides with a free hydroxyl group on position 3', on average producing tetranucleotides.
Type III site-specific deoxyribonuclease (EC 3.1.21.5, type III restriction enzyme, restriction-modification system) is an enzyme. [1] This enzyme catalyses the following chemical reaction Endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5'- phosphates
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The enzyme complex is composed of three different subunits called RecB, RecC, and RecD and hence the complex is named RecBCD (Figure 1). Before the discovery of the recD gene, [4] the enzyme was known as “RecBC.”