Search results
Results From The WOW.Com Content Network
Cronbach's alpha (Cronbach's ), also known as tau-equivalent reliability or coefficient alpha (coefficient ), is a reliability coefficient and a measure of the internal consistency of tests and measures. [1] [2] [3] It was named after the American psychologist Lee Cronbach.
The name of this formula stems from the fact that is the twentieth formula discussed in Kuder and Richardson's seminal paper on test reliability. [1] It is a special case of Cronbach's α, computed for dichotomous scores. [2] [3] It is often claimed that a high KR-20 coefficient (e.g., > 0.90) indicates a homogeneous test. However, like ...
The most common internal consistency measure is Cronbach's alpha, which is usually interpreted as the mean of all possible split-half coefficients. [9] Cronbach's alpha is a generalization of an earlier form of estimating internal consistency, Kuder–Richardson Formula 20. [9]
Alpha is also a function of the number of items, so shorter scales will often have lower reliability estimates yet still be preferable in many situations because they are lower burden. An alternative way of thinking about internal consistency is that it is the extent to which all of the items of a test measure the same latent variable .
Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities. In these contexts, the capital letters and the small letters represent distinct and unrelated entities.
Cronbach's can be shown to provide a lower bound for reliability under rather mild assumptions. [citation needed] Thus, the reliability of test scores in a population is always higher than the value of Cronbach's in that population. Thus, this method is empirically feasible and, as a result, it is very popular among researchers.
However, the most accurate formula (which is applicable for all sample sizes) [14] is x ¯ ± t 0.05 , n − 1 s 1 + 1 n {\displaystyle {\bar {x}}\pm t_{0.05,n-1}s{\sqrt {1+{\frac {1}{n}}}}} Bland and Altman [ 15 ] have expanded on this idea by graphing the difference of each point, the mean difference, and the limits of agreement on the ...
Krippendorff's alpha coefficient, [1] named after academic Klaus Krippendorff, is a statistical measure of the agreement achieved when coding a set of units of analysis.. Since the 1970s, alpha has been used in content analysis where textual units are categorized by trained readers, in counseling and survey research where experts code open-ended interview data into analyzable terms, in ...