Search results
Results From The WOW.Com Content Network
Tidal heating (also known as tidal working or tidal flexing) occurs through the tidal friction processes: orbital and rotational energy is dissipated as heat in either (or both) the surface ocean or interior of a planet or satellite. When an object is in an elliptical orbit, the tidal forces acting on it are stronger near periapsis than near ...
The semi-diurnal tides go through one full cycle (a high and low tide) about once every 12 hours and one full cycle of maximum height (a spring and neap tide) about once every 14 days. The semi-diurnal tide (one maximum every 12 or so hours) is primarily lunar (only S 2 is purely solar) and gives rise to sectorial (or sectoral) deformations ...
Tidal flow timings and velocities appear in tide charts or a tidal stream atlas. Tide charts come in sets. Each chart covers a single hour between one high water and another (they ignore the leftover 24 minutes) and show the average tidal flow for that hour. An arrow on the tidal chart indicates the direction and the average flow speed (usually ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A chart datum is the water level surface serving as origin of depths displayed on a nautical chart and for reporting and predicting tide heights. A chart datum is generally derived from some tidal phase, in which case it is also known as a tidal datum. [1] Common chart datums are lowest astronomical tide (LAT) [1] and mean lower low water (MLLW ...
Tide tables, sometimes called tide charts, are used for tidal prediction and show the daily times and levels of high and low tides, usually for a particular location. [1] Tide heights at intermediate times (between high and low water) can be approximated by using the rule of twelfths or more accurately calculated by using a published tidal ...
Tidal heating of Io (also known as tidal working) occurs through the tidal friction processes between Jupiter and its moon. Orbital and rotational energy are dissipated as heat in the crust of the moon. Io has a similar mass and size as the Moon, but Io is the most geologically active body in the Solar System. This is caused by the heating ...
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code