Search results
Results From The WOW.Com Content Network
The neutron transport equation is a balance statement that conserves neutrons. Each term represents a gain or a loss of a neutron, and the balance, in essence, claims that neutrons gained equals neutrons lost. It is formulated as follows: [1]
Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0 N D = Number of atoms decayed at time t = + dimensionless dimensionless Decay rate, activity of a radioisotope: A = Bq = Hz = s −1 [T] −1: Decay constant: λ
The Monte Carlo method for radiation particle transport has its origins at LANL dates back to 1946. [3] The creators of these methods were Stanislaw Ulam, John von Neumann, Robert Richtmyer, and Nicholas Metropolis. [4] Monte Carlo for radiation transport was conceived by Stanislaw Ulam in 1946 while playing Solitaire while recovering from an ...
The intensity field can in principle be solved from the integrodifferential radiative transfer equation (RTE), but an exact solution is usually impossible and even in the case of geometrically simple systems can contain unusual special functions such as the Chandrasekhar's H-function and Chandrasekhar's X- and Y-functions. [3]
This involves computing exact or approximate solutions of the transport equation, and there are various forms of the transport equation that have been studied. Common varieties include steady-state vs time-dependent, scalar vs vector (the latter including polarization), and monoenergetic vs multi-energy (multi-group).
Neutron flux in asymptotic giant branch stars and in supernovae is responsible for most of the natural nucleosynthesis producing elements heavier than iron.In stars there is a relatively low neutron flux on the order of 10 5 to 10 11 cm −2 s −1, resulting in nucleosynthesis by the s-process (slow neutron-capture process).
Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emitting gamma rays , or particles such as beta particles , alpha particles , fission products , and ...
The RTE is a differential equation describing radiance (, ^,).It can be derived via conservation of energy.Briefly, the RTE states that a beam of light loses energy through divergence and extinction (including both absorption and scattering away from the beam) and gains energy from light sources in the medium and scattering directed towards the beam.