Search results
Results From The WOW.Com Content Network
In graph theory, the crossing number cr(G) of a graph G is the lowest number of edge crossings of a plane drawing of the graph G. For instance, a graph is planar if and only if its crossing number is zero. Determining the crossing number continues to be of great importance in graph drawing, as user studies have shown that drawing graphs with ...
A necessary condition for two lines to intersect is that they are in the same plane—that is, are not skew lines. Satisfaction of this condition is equivalent to the tetrahedron with vertices at two of the points on one line and two of the points on the other line being degenerate in the sense of having zero volume.
The slope number of a graph is the minimum number of distinct edge slopes needed in a drawing with straight line segment edges (allowing crossings). Cubic graphs have slope number at most four, but graphs of degree five may have unbounded slope number; it remains open whether the slope number of degree-4 graphs is bounded. [12]
Graph drawing also can be said to encompass problems that deal with the crossing number and its various generalizations. The crossing number of a graph is the minimum number of intersections between edges that a drawing of the graph in the plane must contain. For a planar graph, the crossing number is zero by definition. Drawings on surfaces ...
A crossing is counted whenever two edges that are disjoint in the graph have a nonempty intersection in the plane. The question is then, what is the minimum number of crossings in such a drawing? [2] [3] Turán's formulation of this problem is often recognized as one of the first studies of the crossing numbers of graphs. [4]
These are the connected components of the points that would remain after removing all points on lines. [1] The edges or panels of the arrangement are one-dimensional regions belonging to a single line. They are the open line segments and open infinite rays into which each line is partitioned by its crossing points with the other lines.
[2] [3] After a third chapter relating the crossing number to graph parameters including skewness, bisection width, thickness, and (via the Albertson conjecture) the chromatic number, the final chapter of part I concerns the computational complexity of finding minimum-crossing graph drawings, including the results that the problem is both NP ...
Since each line segment lies on one of m lines, and any two lines intersect in at most one point, the crossing number of this graph is at most the number of points where two lines intersect, which is at most m(m − 1)/2. The crossing number inequality implies that either e ≤ 7.5n, or that m(m − 1)/2 ≥ e 3 / 33.75n 2.