Search results
Results From The WOW.Com Content Network
0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add" : a (0) = 0; for n > 0, a ( n ) = a ( n − 1) − n if that number is positive and not already in the sequence, otherwise a ( n ) = a ( n − 1) + n , whether or not that number is already in the sequence.
2: Dyadic number: 3: Triadic number: 4: Tetradic number: the same as dyadic number 5: Pentadic number: 6: Hexadic number: not a field: 7: Heptadic number: 8: Octadic number: the same as dyadic number 9: Enneadic number: the same as triadic number 10: Decadic number: not a field 11: Hendecadic number: 12: Dodecadic number: not a field
Even and odd numbers: An integer is even if it is a multiple of 2, and is odd otherwise. Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...
The figure shows that 8 can be decomposed into 5 (the number of ways to climb 4 steps, followed by a single-step) plus 3 (the number of ways to climb 3 steps, followed by a double-step). The same reasoning is applied recursively until a single step, of which there is only one way to climb.
In base 10, ten different digits 0, ..., 9 are used and the position of a digit is used to signify the power of ten that the digit is to be multiplied with, as in 304 = 3×100 + 0×10 + 4×1 or more precisely 3×10 2 + 0×10 1 + 4×10 0. Zero, which is not needed in the other systems, is of crucial importance here, in order to be able to "skip ...
The 2, 8, and 9 resemble Arabic numerals more than Eastern Arabic numerals or Indian numerals. Leonardo Fibonacci was a Pisan mathematician who had studied in the Pisan trading colony of Bugia , in what is now Algeria , [ 15 ] and he endeavored to promote the numeral system in Europe with his 1202 book Liber Abaci :
2. Denotes the additive inverse and is read as minus, the negative of, or the opposite of; for example, –2. 3. Also used in place of \ for denoting the set-theoretic complement; see \ in § Set theory. × (multiplication sign) 1. In elementary arithmetic, denotes multiplication, and is read as times; for example, 3 × 2. 2.
7 + 5 ⁄ 8 is "seven and five eighths" A space is placed to mark the boundary between the whole number and the fraction part unless superscripts and subscripts are used; for example: 9 1/2; 9 + 1 ⁄ 2 9 + 1 / 2