Search results
Results From The WOW.Com Content Network
Myelin's best known function is to increase the rate at which information, encoded as electrical charges, passes along the axon's length. Myelin achieves this by eliciting saltatory conduction. [1] Saltatory conduction refers to the fact that electrical impulses 'jump' along the axon, over long myelin sheaths, from one node of Ranvier to the next.
The neurilemma is underlain by the myelin sheath (also known as the medullary sheath). In the central nervous system, axons are myelinated by oligodendrocytes, thus lack neurilemma. The myelin sheaths of oligodendrocytes do not have neurilemma because excess cytoplasm is directed centrally toward the oligodendrocyte cell body.
Cross section of an axon: (1) Axon (2) Nucleus (3) Schwann cell (4) Myelin sheath (5) Neurilemma. In the nervous system, axons may be myelinated, or unmyelinated. This is the provision of an insulating layer, called a myelin sheath. The myelin membrane is unique in its relatively high lipid to protein ratio. [17]
A single oligodendrocyte can extend its processes to cover up to 40 axons, that can include multiple adjacent axons. [2] The myelin sheath is not continuous but is segmented along the axon's length at gaps known as the nodes of Ranvier. In the peripheral nervous system the myelination of axons is carried out by Schwann cells. [1]
White matter is the tissue through which messages pass between different areas of grey matter within the central nervous system. The white matter is white because of the fatty substance (myelin) that surrounds the nerve fibers (axons). This myelin is found in almost all long nerve fibers, and acts as an electrical insulation.
The myelin sheath in peripheral nerves normally runs along the axon in sections about 1 mm long, punctuated by unsheathed nodes of Ranvier, which contain a high density of voltage-gated ion channels. Multiple sclerosis is a neurological disorder that results from the demyelination of axons in the central nervous system.
Nerves are composed of myelinated and unmyelinated axons, Schwann cells surrounded by connective tissue. The three layers of connective tissue surrounding each nerve are: [11] Endoneurium. Each nerve axon, or fiber is surrounded by the endoneurium, which is also called the endoneurial tube, channel or sheath. This is a thin, delicate ...
The Schwann cells do not only create the myelin sheath, but also help protect the axon. The myelin sheath’s purpose is to allow the impulses from nerve cells to transmit quicker and fluently. It also prevents charges from leaking out of the nerves. 1. Axon 2. Nucleus of Schwann Cell 3. Schwann Cell 4. Myelin Sheath 5. Neurilemma