Search results
Results From The WOW.Com Content Network
Glucose-containing compounds are digested and taken up by the body in the intestines, including starch, glycogen, disaccharides and as monosaccharide. Glucose is stored in mainly the liver and muscles as glycogen. It is distributed and utilized in tissues as free glucose. To discuss image, please see Template talk:Human body diagrams
Download as PDF; Printable version; ... 9 Starch granule. An example of the template with all diagrams activated. Note: title bars are currently disabled in this view
Glycogen (black granules) in spermatozoa of a flatworm; transmission electron microscopy, scale: 0.3 μm. Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, [2] fungi, and bacteria. [3] It is the main storage form of glucose in the human body.
Glycogenesis is the process of glycogen synthesis or the process of converting glucose into glycogen in which glucose molecules are added to chains of glycogen for storage. This process is activated during rest periods following the Cori cycle , in the liver , and also activated by insulin in response to high glucose levels .
Glycogen is a highly branched structure, consisting of the core protein Glycogenin, surrounded by branches of glucose units, linked together. [ 2 ] [ 12 ] The branching of glycogen increases its solubility, and allows for a higher number of glucose molecules to be accessible for breakdown at the same time. [ 2 ]
polysaccharide: cellulose – carbohydrate – chitin – glycogen – starch proteins : primary structure – secondary structure – tertiary structure – conformation – native state – protein folding – enzyme – receptor – transmembrane receptor – ion channel – membrane transporter – collagen – pigments : chlorophyll ...
B-type chains, making half of the branches, have two branch points, and all chains have the same length. E. Meléndez-Hevia, R. Meléndez and E. I. Canela (2000) "Glycogen Structure: an Evolutionary View", pp. 319–326 in Technological and Medical Implications of Metabolic Control Analysis (ed. A. Cornish-Bowden and M. L. Cárdenas), Kluwer Academic Publishers, Dordrecht
Other uses for α-glucan have been developed based on its availability in bacteria. The accumulation of glycogen Neisseria polysacchera and other bacteria are able to use in α-glucan to catalyze glucose units to form α-1,4-glucan and liberating fructose in the process. To regulate carbohydrate metabolism, more resistant starch was necessary.