Search results
Results From The WOW.Com Content Network
The magnetocaloric effect can be quantified with the following equation: = ((,)) ((,)) where is the adiabatic change in temperature of the magnetic system around temperature T, H is the applied external magnetic field, C is the heat capacity of the working magnet (refrigerant) and M is the magnetization of the refrigerant.
The elastocaloric effect is part of a broader category of caloric effects that can be utilized for solid-state cooling technologies. Other notable caloric effects include: Magnetocaloric effect (MCE): This effect involves a temperature change in a material due to a change in magnetic field. It is based on the magnetocaloric materials' ability ...
Superconducting magnetic energy storage (SMES) systems store energy in the magnetic field created by the flow of direct current in a superconducting coil that has been cryogenically cooled to a temperature below its superconducting critical temperature. This use of superconducting coils to store magnetic energy was invented by M. Ferrier in 1970.
Magnetic refrigerators are refrigerators that work on the magnetocaloric effect. The cooling effect is triggered by placing a metal alloy in a magnetic field. [37] Acoustic refrigerators are refrigerators that use resonant linear reciprocating motors/alternators to generate a sound that is converted to heat and cold using compressed helium gas ...
Magnetic refrigeration, or adiabatic demagnetization, is a cooling technology based on the magnetocaloric effect, an intrinsic property of magnetic solids. The refrigerant is often a paramagnetic salt, such as cerium magnesium nitrate. The active magnetic dipoles in this case are those of the electron shells of the paramagnetic atoms.
Magnetic evaporative cooling is a process for lowering the temperature of a group of atoms, after pre-cooled by methods such as laser cooling. Magnetic refrigeration cools below 0.3K, by making use of the magnetocaloric effect.
These cycles are energy-efficient and environmentally friendly, making EC devices ideal for portable, localized, and distributed cooling. [9] [10] The EC effect involves a temperature change in a dielectric material when an electric field is applied or removed, making it suitable for compact cooling solutions. In 2013, a chip-scale solid-state ...
The ionocaloric refrigeration cycle is an advanced cooling technology that utilizes the ionocaloric effect, driven by an electrochemical field, to achieve efficient and eco-friendly refrigeration. By manipulating the electrochemical potential through ion addition or removal, significant temperature changes and entropy variations are achieved.