Ads
related to: satisfying inequalities on a graph ppt template examples pdf full length
Search results
Results From The WOW.Com Content Network
For graphs of constant arboricity, such as planar graphs (or in general graphs from any non-trivial minor-closed graph family), this algorithm takes O (m) time, which is optimal since it is linear in the size of the input. [18] If one desires only a single triangle, or an assurance that the graph is triangle-free, faster algorithms are possible.
Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]
The top example shows a case where z is much less than the sum x + y of the other two sides, and the bottom example shows a case where the side z is only slightly less than x + y. In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the ...
The decision version of the TSP (where given a length L, the task is to decide whether the graph has a tour whose length is at most L) belongs to the class of NP-complete problems. Thus, it is possible that the worst-case running time for any algorithm for the TSP increases superpolynomially (but no more than exponentially ) with the number of ...
As in the decision case, a problem in the #CSP is defined by a set of relations. Each problem takes a Boolean formula as input and the task is to compute the number of satisfying assignments. This can be further generalized by using larger domain sizes and attaching a weight to each satisfying assignment and computing the sum of these weights.
We further need the restriction that both and are non-negative, as we can see from the example =, = and =: ‖ + ‖ = < = ‖ ‖ + ‖ ‖. The reverse inequality follows from the same argument as the standard Minkowski, but uses that Holder's inequality is also reversed in this range.
In the context of metric measure spaces, the definition of a Poincaré inequality is slightly different.One definition is: a metric measure space supports a (q,p)-Poincare inequality for some , < if there are constants C and λ ≥ 1 so that for each ball B in the space, ‖ ‖ () ‖ ‖ ().
The curve is a graph showing the proportion of overall income or wealth assumed by the bottom x% of the people, although this is not rigorously true for a finite population (see below). It is often used to represent income distribution , where it shows for the bottom x % of households, what percentage ( y %) of the total income they have.