Search results
Results From The WOW.Com Content Network
The force of the spring reverses the direction of rotation, so the wheel oscillates back and forth, driven at the top by the clock's gears. Torsion springs consisting of twisted ropes or sinew, were used to store potential energy to power several types of ancient weapons; including the Greek ballista and the Roman scorpio and catapults like the ...
In a mass–spring system, with mass m and spring stiffness k, the natural angular frequency can be calculated as: = In an electrical network , ω is a natural angular frequency of a response function f ( t ) if the Laplace transform F ( s ) of f ( t ) includes the term Ke − st , where s = σ + ω i for a real σ , and K ≠ 0 is a constant ...
The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers. This model is well-suited for modelling object with complex material properties such as nonlinearity and viscoelasticity. Packages such as MATLAB may be used to run simulations of such models. [1]
OpenSees allows users to create finite element applications for simulating the response of structural and geotechnical systems subjected to earthquakes. This framework was developed by Frank McKenna and Gregory L. Fenves with significant contributions from Michael H. Scott, Terje Haukaas, Armen Der Kiureghian, Remo M. de Souza, Filip C ...
In rotordynamical systems, the eigenfrequencies often depend on the rotation rates due to the induced gyroscopic effects or variable hydrodynamic conditions in fluid bearings. It might represent the following cases: Campbell Diagram of a steam turbine. Analysis shows that there are well-damped critical speed at lower speed range.
In physics, rotational–vibrational coupling [1] occurs when the rotation frequency of a system is close to or identical to a natural frequency of internal vibration. The animation on the right shows ideal motion, with the force exerted by the spring and the distance from the center of rotation increasing together linearly with no friction .
Freeware finite element package; The present version Z88Aurora V5 offers, in addition to static strength analysis modules such as non-linear strength calculations (large displacements), simulations with non-linear materials, natural frequency, static thermal analysis and a contact module.
The Langevin equation can be generalized to rotational dynamics of molecules, Brownian particles, etc. A standard (according to NIST [ 5 ] ) way to do it is to leverage a quaternion -based description of the stochastic rotational motion.