Ads
related to: fraction greater than 1 calculator with steps
Search results
Results From The WOW.Com Content Network
An irreducible fraction (or fraction in lowest terms, simplest form or reduced fraction) is a fraction in which the numerator and denominator are integers that have no other common divisors than 1 (and −1, when negative numbers are considered). [1] In other words, a fraction a b is irreducible if and only if a and b are coprime, that is ...
In general, a common fraction is said to be a proper fraction, if the absolute value of the fraction is strictly less than one—that is, if the fraction is greater than −1 and less than 1. [14] [15] It is said to be an improper fraction, or sometimes top-heavy fraction, [16] if the absolute value of the fraction is greater than or equal to 1 ...
In academic literature, when inline fractions are combined with implied multiplication without explicit parentheses, the multiplication is conventionally interpreted as having higher precedence than division, so that e.g. 1 / 2n is interpreted to mean 1 / (2 · n) rather than (1 / 2) · n.
Description. The lowest common denominator of a set of fractions is the lowest number that is a multiple of all the denominators: their lowest common multiple. The product of the denominators is always a common denominator, as in: but it is not always the lowest common denominator, as in: Here, 36 is the least common multiple of 12 and 18.
A continued fraction is a mathematical expression that can be writen as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, the continued fraction is finite or infinite. Different fields of mathematics have different ...
An Egyptian fraction is a finite sum of distinct unit fractions, such as That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each other. The value of an expression of this type is a positive rational number ; for instance the Egyptian fraction ...
For example, the repeating continued fraction [1;1,1,1,...] is the golden ratio, and the repeating continued fraction [1;2,2,2,...] is the square root of 2. In contrast, the decimal representations of quadratic irrationals are apparently random. The square roots of all (positive) integers that are not perfect squares are quadratic irrationals ...
The reason is that 3 is a divisor of 9, 11 is a divisor of 99, 41 is a divisor of 99999, etc. To find the period of 1 / p , we can check whether the prime p divides some number 999...999 in which the number of digits divides p − 1. Since the period is never greater than p − 1, we can obtain this by calculating 10 p−1 − 1 / p ...