Ads
related to: math probability problems coin showgenerationgenius.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In mathematics, the coin problem (also referred to as the Frobenius coin problem or Frobenius problem, after the mathematician Ferdinand Frobenius) is a mathematical problem that asks for the largest monetary amount that cannot be obtained using only coins of specified denominations. [1] For example, the largest amount that cannot be obtained ...
Bertrand's box paradox is a veridical paradox in elementary probability theory. It was first posed by Joseph Bertrand in his 1889 work Calcul des Probabilités. There are three boxes: a box containing two gold coins, a box containing two silver coins, a box containing one gold coin and one silver coin. A coin withdrawn at random from the three ...
The St. Petersburg paradox or St. Petersburg lottery[1] is a paradox involving the game of flipping a coin where the expected payoff of the lottery game is infinite but nevertheless seems to be worth only a very small amount to the participants. The St. Petersburg paradox is a situation where a naïve decision criterion that takes only the ...
Monty Hall problem. In search of a new car, the player chooses a door, say 1. The game host then opens one of the other doors, say 3, to reveal a goat and offers to let the player switch from door 1 to door 2. The Monty Hall problem is a brain teaser, in the form of a probability puzzle, based nominally on the American television game show Let ...
Sleeping Beauty problem. The Sleeping Beauty problem, also known as the Sleeping Beauty paradox, [1] is a puzzle in decision theory in which an ideally rational epistemic agent is told she will be awoken from sleep either once or twice according to the toss of a coin. Each time she will have no memory of whether she has been awoken before, and ...
Probability is the branch of mathematics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1][1][2] A simple example is the tossing of a fair (unbiased) coin.
The Bertrand paradox is a problem within the classical interpretation of probability theory. Joseph Bertrand introduced it in his work Calcul des probabilités (1889) [1] as an example to show that the principle of indifference may not produce definite, well-defined results for probabilities if it is applied uncritically when the domain of possibilities is infinite.
Coupon collector's problem. In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more ...