Search results
Results From The WOW.Com Content Network
As it does not change at all, the Levi-Civita symbol is, by definition, a pseudotensor. As the Levi-Civita symbol is a pseudotensor, the result of taking a cross product is a pseudovector, not a vector. [5] Under a general coordinate change, the components of the permutation tensor are multiplied by the Jacobian of the transformation matrix ...
The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.
Kronecker delta. Mathematical function of two variables; outputs 1 if they are equal, 0 otherwise. In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: or with use of Iverson brackets: For example ...
where the solution to i 2 = −1 is the "imaginary unit", and δ jk is the Kronecker delta, which equals +1 if j = k and 0 otherwise. This expression is useful for "selecting" any one of the matrices numerically by substituting values of j = 1, 2, 3, in turn useful when any of the matrices (but no particular one) is to be used in algebraic ...
This can be simplified by performing a contraction on the Levi-Civita symbols, = =, where is the Kronecker delta function (= when and = when =) and is the generalized Kronecker delta function. We can reason out this identity by recognizing that the index k {\displaystyle k} will be summed out leaving only i {\displaystyle i} and j ...
In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.
where δ ij is the Kronecker delta, and ε ijk is the three-dimensional Levi-Civita symbol. The spacelike components of four-vectors are rotated, while the timelike components remain unchanged. For the case of rotations about the z-axis only, the spacelike part of the Lorentz matrix reduces to the rotation matrix about the z-axis:
The Levi-Civita connection is the torsion-free Riemannian connection on a manifold. It is unique by the fundamental theorem of Riemannian geometry. For every Riemannian connection, one may write a (unique) corresponding Levi-Civita connection. The difference between the two is given by the contorsion tensor.